Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Daniel Best,^a Sarah F. Jenkinson,^{a*} David J. Watkin,^b Kathrine V. Booth^a and George W. I. Fleet^a

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and ^bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study $T=150~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.002~\mathrm{Å}$ R factor = 0.030 wR factor = 0.074 Data-to-parameter ratio = 9.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,3-O-Isopropylidene-L-apiono-1,4-lactone [(3\$,4\$)-3,4-dihydroxy-4-(hydroxymethyl)-3,4-di-O-isopropylidene-4,5-dihydrofuran-2(3\$H)-one]

The relative configuration of the title compound, $C_8H_{12}O_5$, was unequivocally established by X-ray crystallographic analysis; the absolute configuration was determined by the use of D-ribose as a starting material.

Received 11 January 2007 Accepted 25 January 2007

Comment

Branched 2-C-methyl nucleosides are the most promising drug candidates for the treatment of hepatitis C (Sorbera et al., 2006; Pierra et al., 2006). There is interest in the activity of nucleoside analogues with substitutents at C-3 of the sugar that may be derived from D-apiose (1D) (Sells & Nair, 1992; Kim et al., 2004). L-Nucleoside analogues – the enantiomers of the naturally occurring nucleosides – also produce novel antiviral agents (Mathé & Gosselin, 2006). A project to investigate nucleosides derived from L-apiose (1L) may provide chemotherapeutic leads. The title lactone, (5), is a divergent intermediate of value in the synthesis of such compounds. The crystal structure of (5) reported in this paper removes the ambiguity of the stereochemistry at C-3 of the lactone; the absolute configuration of (5) was determined by the use of D-ribose (2) as the starting material.

The isolated molecule of (5) (Fig. 1) shows no unusual features when compared with the *Mogul* norms (Bruno *et al.*,

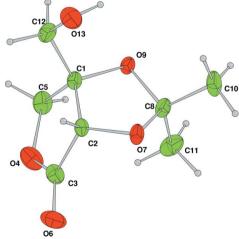


Figure 1 06
A view of (5), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

© 2007 International Union of Crystallography All rights reserved 2004). The crystal structure consists of isolated chains of molecules linked by a single hydrogen bond, parallel to the *a* axis (Fig. 2). There are no hydrogen bonds between the chains, leading to crystals which were not easily cut.

Experimental

The C-2 branched D-hamamelose, (3), prepared from D-ribose, (2) (Ho, 1979), was converted to the ketal of L-apiose, (4), as described previously by Yun *et al.* (2005). The lactol (4) was oxidized by bromine water (Booth *et al.*, 2007) to the title compound, (5), which was crystallized from chloroform (m.p. 363 K). $[\alpha]_D^{22}$ 70 (c, 0.95 in chloroform).

Crystal data

 $\begin{array}{lll} \text{C}_8\text{H}_{12}\text{O}_5 & Z = 4 \\ M_r = 188.18 & D_x = 1.396 \text{ Mg m}^{-3} \\ \text{Orthorhombic, } P2_12_12_1 & \text{Mo } K\alpha \text{ radiation} \\ a = 7.2075 \text{ (2) Å} & \mu = 0.12 \text{ mm}^{-1} \\ b = 9.5645 \text{ (3) Å} & T = 150 \text{ K} \\ c = 12.9851 \text{ (5) Å} & \text{Block, colourless} \\ V = 895.14 \text{ (5) Å}^3 & 0.70 \times 0.50 \times 0.30 \text{ mm} \end{array}$

Data collection

Nonius KappaCCD area-detector diffractometer 4866 measured reflections 1171 independent reflections 1106 reflections with $I > 2\sigma(I)$ Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.74$, $T_{\max} = 0.97$ 4866 measured reflections 1171 independent reflections 1172 independent reflections 1173 independent reflections 1174 independent reflections 1175 independent reflections 1176 reflections with $I > 2\sigma(I)$ $R_{\max} = 0.035$ $\theta_{\max} = 27.5^{\circ}$

Refinement

 $\begin{array}{lll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F^2) + (0.03P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.030 & + 0.32P], \\ wR(F^2) = 0.074 & where $P = [\max(F_{\rm o}^2,0) + 2F_{\rm c}^2]/3$ \\ S = 0.96 & (\Delta/\sigma)_{\rm max} < 0.001 \\ 1171 \mbox{ reflections} & \Delta\rho_{\rm max} = 0.21 \mbox{ e Å}^{-3} \\ 118 \mbox{ parameters} & \Delta\rho_{\rm min} = -0.22 \mbox{ e Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
O13-H7···O6 ⁱ	0.85	2.05	2.802 (2)	148

Symmetry code: (i) x - 1, y, z.

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration assigned on the basis of the starting materials. The relatively large ratio of minimum to maximum corrections applied in the multi-scan process (1:1.51) reflects changes in the illuminated volume of the crystal. These were kept to a minimum, and were taken into account (Görbitz, 1999) by multi-scan interframe scaling (DENZO and SCALEPACK; Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry, with C—H distances in the range 0.93–0.98 Å and O—H = 0.82 Å, and with $U_{\rm iso}({\rm H})$ = 1.2–1.5 times $U_{\rm eq}$

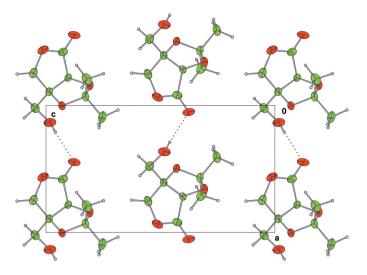


Figure 2 The molecular structure of (5), along the b axis, showing the hydrogenbonded chains lying parallel to a. There are no hydrogen bonds between the chains.

of the parent atom, after which the positions were refined with riding constraints

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

A generous gift of D-ribose from Dextra Laboratories Ltd, Reading, is gratefully acknowledged.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). *J. Appl. Cryst.* **27**, 435.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Booth, K. V., Best, D., Jenkinson, S. F. & Fleet, G. W. J. (2007). In preparation. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.

Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.

Ho, P.-T. (1979). Can. J. Chem. 57, 381–383.

Kim, M. J., Jeong, L. S., Kim, J. H., Shin, J. H., Chung, S. Y., Lee, S. K. & Chun, M. W. (2004). Nucleosides Nucleotides Nucleic Acids, 23, 715–724.

Mathé, C. & Gosselin, G. (2006). Antiviral Res. 71, 276-281.

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Pierra, C., Amador, A., Benzaria, S., Cretton-Scott, E., D'Amours, M., Mao, J., Mathieu, S., Moussa, A., Bridges, E. G., Standring, D. N., Sommadossi, J. P., Storer, R. & Gosselin, G. (2006). J. Med. Chem. 49, 6614–6620.

Sells, T. B. & Nair, V. (1992). Tetrahedron Lett. 33, 7639-7642.

Sorbera, L. A., Castaner, J. & Leeson, P. A. (2006). Drugs Future, 31, 320–324.
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

Yun, M., Moon, H. R., Kim, H. O., Choi, W. J., Kim, Y. C., Park, C. S. & Jeong, L. S. (2005). *Tetrahedron Lett.* 46, 5903–5905.